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The Second-Order Equation from the (1/2, 0) %
(0, 1/2) Representation of the PoincareÂGroup

Valeri V. Dvoeglazov1
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On the basis of first principles we derive the Barut±Wilson±Fushchich second-
order equation in the (1/2, 0) % (0, 1/2) representation. Then we discuss the
possibility of describing various mass and spin states in such a framework.

A few decades ago Barut and collaborators proposed the use of the four-

dimensional representation of the O (4, 2) group in order to solve the problem

of lepton mass splitting (Barut et al., 1969, 1970; Wilson, 1974; Barut, 1978,

1979). Similar research has been produced by Fushchich and collaborators

(Fushchich and Grishchenko, 1970; Fushchich and Nikitin, 1973, 1978).

The most general conserved current that is linear in the generators of
the four-dimensional representation of the group O (4, 2) was given as (Barut

et al., 1969, 1970; Wilson, 1974)

j m 5 a 1 g m 1 a 2 P m 1 a 3 s m n q
n (1)

where P m 5 p1 m 1 p2 m is the total momentum, q m 5 p1 m 2 p2 m is the

momentum transfer, and a i are real, constant coefficients which may depend
on the internal degrees of freedom of leptons. The Lagrangian formalism

and the secondary quantization scheme are given by Wilson (1974). Barut

(1978, 1979) derived the mass spectrum of leptons after taking into account

the additional postulate that one has to fix the value of the anomalous magnetic

moment of the particle by its classical value g 5 2(2 a /3), where a is the

fine structure constant.
Recently, we have approached the introduction of similar constructs in

the ( j, 0) % (0, j ) representation from a very different standpoint (Dvoeglazov,
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1997a, b, d).2 Starting from the explicit form of the spinors which are eigen-

spinors of the helicity operator (Varshalovich et al., 1988), one can find two
nonequivalent relations between zero-momentum 2-spinors. The first form
of the Ryder±Burgard relation3 is given in Ahluwalia (1996) (h is a quantum

number for the helicity; in general, see the cited papers for the notation):

[ f h
L( pÊm )]* 5 e 2 2i q h J [1/2] f h

L( pÊm ) (2)

The second form is given in Dvoeglazov (1995):

[ f h
L( pÊm )]* 5 ( 2 1)1/2 2 h e 2 i( q

1
1 q

2
) Q [1/2] f 2 h

L ( pÊm ) (3)

The matrices are defined in the (1/2, 0) % (0, 1/2) representation as follows:

Q [1/2] 5 1 0 2 1

1 0 2 , J [1/2] 5 1 e
i f 0

0 e 2 i f 2 (4)

Here f is the azimuthal angle related to p ® 0.

In this paper we use the generalized Ryder±Burgard relation

f h
L( pÊm ) 5 a ( 2 1)1/2 2 he i( q 1 1 q 2) Q [1/2][ f 2 h

L ( pÊm )]* 1 be2i q h J 2 1
[1/2][ f h

L( pÊm )]* (5)

with the real constants a and b being arbitrary at this stage. The relevant

relations for f R are obtained after taking into account that

f -
L( p m ) 5 2 Q [1/2][ f R̄( p m )]*, f L̄( p m ) 5 1 Q [1/2] [ f -

R( p m )]* (6a)

f -
R( p m ) 5 2 Q [1/2][ f L̄( p m )]*, f R̄( p m ) 5 1 Q [1/2] [ f -

L( p m )]* (6b)

which are easily derived by considering the explicit form of 4-spinors, (e.g.,

Ryder, 1985).4 Next we apply the procedure outlined in Ahluwalia (1996,

2 In Dvoeglazov (1997a) I used the Tucker±Hammer (1971) modification of Weinberg’ s (1964a,
b) equations.

3 This name was introduced by Ahluwalia et al. (1993) in considering the (1, 0) % (0, 1)
representation. If one uses f R( pÊm ) 5 6 f L( pÊm ) (cf. also Faustov, 1971; Ryder, 1985), after
application of the Wigner rules for the boosts of the 2-spinors to the momentum p m one
immediately arrives at the Bargmann±Wightman±Wigner type quantum field theory (Wigner,
1965; cf. also Gel’ fand and Tsetlin, 1957; Sokolik, 1958) in this representation. [Note that

equation (22a) of Faustov (1971) reads Bu l (0) 5 u l (0), where u l (
-p ) is a 2(2j 1 1)-spinor

and B 2 5 1 is an 2(2j 1 1) 3 2(2j 1 1) matrix with the above-mentioned property.]
4 In fact, we have a certain amount of room in the definitions of the right spinors due to the
arbitrariness of the phase factors at this stage. But if one chooses the spinorial basis as in Ryder
(1985), one can find the relevant spinors in any frame after the application of the Wigner rules

f R,L( p m ) 5 exp( 6 s ? w /2) f R,L( pÊm ) (7)

for right (left) spinors); cosh( w ) 5 E /m, sinh( w ) 5 | p | /m, and w
Ã

5 p/| p | is the unit vector. In
subsequent papers we shall consider different choices of the phase factors between left and right
spinors in detail.
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footnote 1). Namely,

f h
L( p m ) 5 L L( p m ¬ pÊm )) f h

L( pÊm )

5 L L( p m ¬ pÊm ) {a ( 2 1)1/2 2 he i( q
1
1 q

2
) Q [1/2][ f 2 h

L ( pÊm )]*

1 be2i q
h J 2 1

[1/2][ f h
L( pÊm )]*}

5 2 aei( q 1 1 q 2) L L( p m ¬ pÊm ) L 2 1
R ( p m ¬ pÊm ) f h

R( p m )

1 be2i q h( 2 1)1/2 1 h Q [1/2] J [1/2] f 2 h
R ( p m ) (8)

As a consequence of equations (6a), (6b), (7), and (8), after the choice of

the phase factors (e.g., q 1 5 0, q 2 5 p ), one has

f h
L( p m ) 5 a

p0 2 s ? p

m
f h

R( p m ) 1 b ( 2 1)1/2 1 h Q [1/2] J [1/2] f 2 h
R ( p m ) (9)

f h
R( p m ) 5 a

p0 1 s ? p

m
f h

L( p m ) 1 b ( 2 1)1/2 1 h Q [1/2] J [1/2] f 2 h
L ( p m ) (10)

Thus, the momentum-space Dirac equation is generalized:

1 a pÃ

m
2 1 2 uh( p m ) 1 ib( 2 1)1/2 2 h g 5#u *2 h( p m ) 5 0 (11)

where

# 5 1 0 i Q [1/2]

2 i Q [1/2] 0 2 (12)

is a 4 3 4 matrix which enters in the definition of the charge conjugation

operation. The counterpart in the coordinate space is

F a
i g m - m

m
1 b#_ 2 1 G C (x m ) 5 0 (13)

provided that in the operator formulation the creation (annihilation) operators

are connected by

b ¯ ( p m ) 5 2 ia - ( p m ), b - ( p m ) 5 1 ia ¯ ( p m ) (14)

We denote by _ the operation of complex conjugation, and note that it acts
as the Hermitian conjugation on the creation (annihilation) operators in q-

number theories.

On the other hand, we have the possibility of dividing the Dirac function

into real and imaginary parts (Majorana, 1937). The transformation from the
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Weyl representation of the g m matrices is made by means of the unitary

4 3 4 matrix

U 5
1

2 1 1 2 i Q [1/2] 1 1 i Q [1/2]

2 1 2 i Q [1/2] 1 2 i Q [1/2] 2 ,

(15)

U ² 5
1

2 1 1 2 i Q [1/2] 2 1 2 i Q [1/2]

1 1 i Q [1/2] 1 2 i Q [1/2] 2
Similar transformations can also be applied to the Weinberg (or Weinberg±

Hammer±Tucker) spin-1 equation in order to divide it into real and imaginary

parts (Dvoeglazov, 1997c). Presumably, this is a general property of all
fundamental wave equations.

Let us write the generalized coordinate-space Dirac equation (13) in the

Majorana representation:

F a
i g m - m

m
2 b_ 2 1 G C (x m ) 5 0 (16)

We used that U#_U 2 1 5 2 _. Following Majorana, we note that the g m

matrices become pure imaginary and the Dirac function can be divided into

C [ C 1 1 i C 2. Hence, we have a set of two real equations:

F a
i g m - m

m
2 b 2 1 G C 1(x

m ) 5 0 (17a)

F a
i g m - m

m
1 b 2 1 G C 2(x

m ) 5 0 (17b)

Adding and subtracting the obtained equations, we arrive at the set ( f 5
C 1 1 C 2 and x 5 C 1 2 C 2)

F a
i g m - m

m
2 1 G f 2 b x 5 0 (18a)

F a
i g m - m

m
2 1 G x 2 b f 5 0 (18b)

which after multiplication by b Þ 0 yield the same second-order equations

for f and x :

F 2a
i g m - m

m
1 a 2 - m - m

m 2 1 b 2 2 1 G H f (x m )

x (x m )
5 0 (19)

With the identifications a /(2m) ® a 2 and [(1 2 b 2)/2a]m ® k , we obtain
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equation (6) of Barut (1978). This is the equation which Barut used to obtain

the mass difference between a muon and an electron.

On using a similar technique and considering different chirality sub-
spaces as independent, one obtains the Fushchich equation (Fushchich and

Nikitin, 1978). It has the interaction with the 4-vector potential which is the

same as the j 5 0 Sakata±Taketani particle. This problem is closely related

to the recent discussion of the Dirac equation with two mass parameters

(Raspini, 1996). It seems to me that the theoretical difference (compared

with the first-order Dirac equation) which we obtain after switched-on interac-
tions is caused by the induced asymmetry between evolutions toward and

backward in time (or, perhaps equivalently, between different chirality/helic-

ity subspaces).

In conclusion, we can now assert that the Barut proposal was not some

puzzling coincidence. In fact, the second-order equation can be derived on

the basis of a minimal number of postulates (Lorentz invariance and relations
between 2-spinors in the zero-momentum frame) and it is a natural conse-

quence of the general structure of the ( j, 0) % (0, j ) representation.
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